Vietnam 2017

   Nanophysics, from fundamental to applications : reloaded

30 Jul-5 Aug 2017 Quy Nhon (Vietnam)

 

ICISE

Signal processing for electron quantum optics
Benjamin Roussel  1@  , Clément Cabart  2@  , Arthur Marguerite  3@  , Gwendal Feve  3@  , Pascal Degiovanni  4@  
1 : Laboratoire de Physique de l'ENS Lyon  (Phys-ENS)  -  Website
CNRS : UMR5672, Ecole Normale Supérieure de Lyon, Université Claude Bernard-Lyon I - UCBL (FRANCE)
46 allée d'Italie 69007 Lyon -  France
2 : Laboratoire de Physique de l'ENS Lyon  (Phys-ENS)  -  Website
CNRS : UMR5672, École Normale Supérieure (ENS) - Lyon
46 allée d'Italie 69007 Lyon -  France
3 : Laboratoire Pierre Aigrain  (LPA)  -  Website
CNRS : UMR8551, Université Pierre et Marie Curie (UPMC) - Paris VI, Université Paris VII - Paris Diderot, Ecole Normale Supérieure de Paris - ENS Paris
Département de Physique Ecole Normale Supérieure 24, rue Lhomond F-75231 Paris Cedex 05 -  France
4 : Laboratoire de Physique de l'ENS Lyon  (Phys-ENS)  -  Website
CNRS : UMR5672, Ecole Normale Supérieure de Lyon
46 allée d'Italie 69007 Lyon -  France

Electron quantum optics is an emerging branch of electronic transport aiming at generating, manipulating and characterizing elementary excitations of the electronic fluid, similarily to what is done in photon quantum optics [Annalen der Physik 526, 1 (2014)].

The key question in electron quantum optics is to determine what single-electron and more generally many-electron wavefunctions are propagating within the conductor. This is encoded within the electronic coherences defined similarily to the Glauber correlation function of order n giving access to the result of every n-particle interferometry experiments. This raises the question of the best elementary signals describing the electronic coherences of a periodically driven electronic source [Physical Status Solidi (b), 1600621 (2017)].

In this work, we introduce the spectral decomposition of the electron and hole parts of the first-order coherence. From this we compute the best elementary signals describing a periodic source. Whenever interactions can be neglected, we can reconstruct the whole many-body state. We then define a many-body notion of entanglement spectrum giving a many-body criterion for pure electron or hole emission. This is in particular relevant when considering a driven Ohmic contact or the mesoscopic capacitor.


Online user: 1 RSS Feed