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We study coherent transport of levitons through a single-level quantum dot system driven by
Lorentzian-shaped voltage pulses. We demonstrate the repeated emergence of the Kondo resonance
in the dynamical regimes where the Fermi sea is driven by optimal pulses free of particle-hole exci-
tations. The formation of the Kondo resonance significantly enhances the dc transport of levitons.

Introduction.— The Kondo effect has been one of the
central subjects of condensed matter physics over the
past 50 years [1, 2]. It is an archetypal example of coher-
ent many-body phenomena in interacting electronic sys-
tems, and the essential low-energy behaviors of Kondo
systems are described by the local Fermi liquid theory.
The development of nanotechnology has extended the
Kondo physics to nonequilibrium regimes [3–6]. Trans-
port through a quantum dot (QD) enables us to study the
nonequilibrium Kondo effect with experimentally tuned
parameters. The interplay between the coherent many-
body resonance and the nonequilibrium field has posed
nontrivial problems. In particular, determining the fun-
damental excitation of the Kondo system driven out of
equilibrium remains a challenging topic [6–8]. Recently,
new insights on the nonequilibrium Kondo physics have
been gained in tandem with technological advances in en-
gineering time-dependent fields. Electrons dressed with
photons acquire novel features which equilibrium elec-
trons do not possess. Periodic driving fields have been
frequently utilized to probe the low energy excitations
of the QD systems [9–19] and to invent new types of
Kondo systems [20, 21]. In sinusoidally driven QD sys-
tems, satellites of the Kondo peak develop at low temper-
atures due to the absorption and the emission of photons
[11, 12]. On the other hand, the spin-flip cotunneling pro-
cesses [14] as well as the ionization of the local site [15]
induce decoherence which hinders the Kondo resonance.

The richness and the complexity of the driven elec-
tronic systems come from the collective response of elec-
trons under the entire Fermi sea. In spite of the dif-
ficulty originating from the many-body effects, Levitov
and coauthors proposed an elegant way to engineer min-
imal excitation states out of the Fermi sea [22–24]. They
found that, among possible pulse profiles, the repeated
Lorentzian pulses excite the Fermi sea without creating
particle-hole excitations. The single-particle nature of
the excitation were clarified at the same time in terms
of the full counting statistics. The elementary excita-
tions created above the undisturbed Fermi sea are termed
levitons, and have been experimentally exploited as ideal
fermionic excitations in electron quantum optics [25, 26].
There have already been a number of works on levitons
injected in quantum Hall systems [24, 27–31]. It is also

theoretically proposed that a Fermi sea driven by de-
signed Lorentzian pulses hosts an exotic excitation with
a fractional effective charge [32].
In this Letter, we demonstrate the coherent transport

of levitons through the Kondo resonance in a QD sys-
tem driven by Lorentzian-shaped periodic pulses. The
Lorentzian driving protocol is distinct from the others
because the optimal pulses can excite a fermionic quasi-
particle while preserving the structure of the Fermi sea.
This enables the coexistence of the Kondo resonance with
the strong driving field. We use a many-body approach
combined with Floquet’s formalism [33, 34] to provide
a conceptually transparent and numerically efficient way
to describe the dynamics of the interacting levitons.
Setup.— We consider a single-level QD coupled to left

and right leads with a periodically oscillating bias volt-
age. The Hamiltonian reads

H =
∑

σ

ǫdd̂
†
σ d̂σ +

∑

α,k,σ

(ǫαk + eVα(t)) ĉ
†
αkσ ĉαkσ

+
∑

α,k,σ

(

tαd̂
†
σ ĉαkσ + h.c.

)

+ Ud̂†↑d̂↑d̂
†
↓d̂↓, (1)

where d̂†σ creates an electron in the QD with spin σ and

ĉ†αkσ creates a conduction electron in the lead α (= L,R)
with spin σ and momentum k. The coupling tα between
the QD and the lead α causes the level broadening Γα ≡
2π|tα|

2ρα, where ρα is the density of states (DOS) of
the conduction electrons at the Fermi energy ǫF . We
consider that the left lead is irradiated with the repeated
Lorentzian pulses

VL(t) =

∞
∑

m=−∞

VAC

π

Tpτw
(t−mTp)2 + τ2w

, (2)

with period Tp, width τw, and amplitude VAC. The right
lead is in equilibrium, i.e. VR(t) = 0.
The periodically driven QD system can be well

described in the Floquet-Green’s function method
[33, 34]. In the following, we drop the spin index σ
for simplicity. The propagators of the photon-dressed
interacting electrons are given by the retarded and the
lesser Green’s functions Gr(t, t′) = −iθ(t− t′)〈d(t)d†(t′)〉
and G<(t, t′) ≡ i〈d†(t′)d(t)〉, respectively. Their Flo-

quet representations are introduced as G
r(<)
mn (ω) ≡



2

∫∞

−∞ dt
∫ Tp/2

−Tp/2
dT
Tp

ei(ω+m~Ω)t−i(ω+n~Ω)t′Gr(<)(t, t′) with

the driving frequency Ω = 2π/TP. Hereafter, we use bold
letters to denote functions in the Floquet representation.
The equilibrium distribution in the right lead is writ-

ten in the Floquet representation as fR = f eq, where
f eq
mn(ω) = δmn/(e

β(ω+m~Ω−ǫF ) + 1) with the Kronecker
delta δmn. In contrast, the time-dependent phase ϕ(t) =
e
~

∫ t

−∞
VL(t

′)dt′ acquired by the electrons tunneling from
the left lead to the QD significantly modifies the distri-
bution function as fL(ω) = Uf eq(ω − eVAC)U

†. Here,
the dc offset of the periodic Lorentzian pulses is included
as a shift of the chemical potential, and absorption and
emission of photons are described via the unitary matrix

Umn = um−n with ul ≡
∫ TP /2

−Tp/2
dt
Tp

ei(l~Ω+eVAC)te−iϕ(t).

For the repeated Lorentzian pulses (2), the matrix el-
ements are computed as

ul =

∞
∑

k=max{0,−l}

Γ(k + l + q)Γ(k − q)e−2πτ(2k+l)

Γ(q)Γ(k + l + 1)Γ(−q)Γ(k + 1)
, (3)

with the Gamma function Γ(x), q ≡ eVAC/~Ω, and
τ ≡ τw/Tp. In the delta-pulse limit τ → 0, fL is identical
to the equilibrium distribution f eq at q ∈ Z because each
pulse introduces the 2πq phase shift. This is a direct con-
sequence of the gauge invariance. The crucial property
of the quantized Lorentzian pulses is that they generate
purely electronic excitations even for finite τ with mini-
mal disturbance of the Fermi sea [22–24]. Moreover, the
probability to excite higher Fourier harmonics decay ex-
ponentially. They are in contrast to non-quantized pulses
which inevitably excite a number of particle-hole pairs
as is the case with the Anderson orthogonality catas-
trophe problem [22, 35]. These peculiar properties of
the quantized Lorentzian pulses result in the quasipar-
ticle nature of levitons created above the undisturbed
Fermi sea [35, 36]. Since the propagators of the photon-
dressed electrons have the same diagrammatic structure
as those in equilibrium, properties of equilibrium inter-
acting electrons are straightforwardly inherited by the
levitons. In particular, the dot electron and the elec-
trons under the undisturbed Fermi sea form the Kondo
resonance through which the leviton flows. This is the
central idea of this Letter.
Dynamical formation of the Kondo Resonance.— One

of the hallmarks of the Kondo effect is the appearance of
the resonant peak in the time-averaged DOS

ρ̄(ω) ≡ −
1

π
Im

∫

Tp

2

−
Tp

2

dT

Tp

∫ ∞

−∞

dtre
iωtrGr (t, t′) , (4)

with tr ≡ t − t′ and T ≡ (t + t′)/2. In the fol-
lowing, we evaluate the self-energy up to the second
order in U [37] to illustrate qualitative behaviors of
the interacting photon-dressed electrons. The retarded
Green’s function can be efficiently calculated in the

FIG. 1. (Color online) Time-averaged DOS with ΓL,R = 1,
ǫd = −4, U = 8, β = 100, τ = 0.02, and ~Ω = 3 for various
values of q.

Floquet representation because it has a simple matrix
form Gr = [1− gr

Σ
r
U ]

−1
gr [33, 34]. Here, the exact

propagators are constructed from the unperturbed one
gr
mn(ω) = δmn/(ω+m~Ω−Ed+iΓ) with the energy level

Ed = ǫd +Und and the linewidth Γ = (ΓL +ΓR)/2. The
charge nd is determined within the Hartree approxima-
tion as nd = − 1

π Im
∑

m

∫

dωg<
mm(ω), where the unper-

turbed lesser Green’s function is given by g< = gr
Σ

<
0 g

a

with Σ
<
0 = i(ΓLfL + ΓRfR). The U2 term of the self-

energy is given as ΣU (z, z
′) = U2g(z, z′)g(z′, z)g(z, z′) on

the Keldysh contour [38]. The retarded and lesser com-
ponents of the self-energy are obtained by projecting the
Keldysh arguments z and z′ onto the real-time axis.

Figure 1 shows the time-averaged DOS for various val-
ues of q. The impurity parameters are chosen as ΓL,R =
1, ǫd = −4, U = 8, and β = 100. The Lorentzian-shaped
bias voltage with τ = 0.02 and ~Ω = 3 excites conduc-
tion electrons in the left lead, dressing them with a large
numbers of photons. While the Kondo peak observed at
q = 0 is reduced by the irradiation, the resonant peak
reappears at q = eVAC/~Ω = 1, which is much larger
than the Kondo temperature TK/~Ω ∼ 0.029 estimated
with the expression TK =

√

UΓ/2 exp [πǫd(ǫd + U)/2UΓ]
[39]. The reduction and the formation of the Kondo peak
are periodically repeated around the larger integer values
of q. The results are distinct from those of a sinusoidally
driven QD, where the irradiation suppresses the Kondo
resonance in the corresponding regimes [15, 16]. The ap-
pearance of the Kondo peak around q ∈ Z originates
from the aforementioned recovery of the Fermi sea in the
dynamical regime: electrons in the minimally disturbed
Fermi sea form the many-body resonance state with the
dot electron. The reduction of the peak height at large
integer q can be attributed to the imperfect formation of
the Fermi sea.

The dynamical formation of the Kondo resonance can
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FIG. 2. (Color online) Density plots of the Wigner function for various values of q. The QD with ΓL,R = 1, ǫd = −3, U = 6,
and β = 100 is under the periodic Lorentzian pulses with the width τ = 0.01 and the frequency ~Ω = 2.

be further analyzed with the electronic Wigner function

W (ω, T ) ≡
ΓLΓR

ΓL + ΓR
Im

∫ ∞

−∞

dtre
iωtrG< (t, t′) , (5)

which provides information on both the spectral func-
tion and the nonequilibrium distribution of the photon-
dressed electrons [29]. The lesser Green’s function can
also be efficiently calculated in the Floquet representa-
tion as G< = Gr [Σ<

0 +Σ
<
U ]G

a. Although direct obser-
vation of the electronic Wigner function requires elabo-
rate measurement setups [26, 29], it visualizes the real-
time dynamics of the quasiparticles which are well rep-
resented in the energy domain.
The five panels in Fig. 2 show the electronic Wigner

function of the photon-dressed electrons for various val-
ues of q. The characteristic structures which extend
above the Fermi energy are fingerprints of levitons
[26, 29]. The sharp Lorentzian pulses with τ = 0.01
and ~Ω = 2 create time-resolved excitations centered at
t/Tp ∈ Z. The singularities observed at ω − ǫF = n~Ω/2
(n ∈ Z) result from the multiphoton-assisted transitions
of the Fermi edge formed by the electrons in the left lead.
At q = 0.6 [Fig. 2(a)], the bare QD level with ǫd = −3 and
ΓL,R = 1 is strongly perturbed by the Lorentzian pulses,
resulting in the decoherence of the Kondo resonance [see
also Fig. 1]. On the contrary, the weight of the DOS is
gradually concentrated at the Fermi energy by increasing
the pulse amplitude [Fig. 2(b)], and eventually becomes
a stationary sharp peak at q = 1 [Fig. 2(c)]. This coun-
terintuitive emergence of the Kondo resonance under the
strong driving field results from the special property of
the Lorentzian pulses to minimize the disturbance of the
Fermi sea at q ∈ Z. Otherwise, a generic driving proto-
col produces particle-hole pairs, which inevitably inhibits
the Kondo resonance. The coherent ripple patterns re-
ported in Ref. 29 concurrently become clear at q = 1 due
to a quantum interference effect. When the amplitude
becomes larger [Figs. 2(d) and (e)], the Kondo peak is
smeared again because of both the dc offset of the pulses
and the particle-hole excitations. The quantum ripples

FIG. 3. (Color online) The dependence of the differential
conductance ∂I

∂VAC
on the amplitude q for various values of τ

and Ω. The solid (dashed) lines correspond to τ = 0.01 (τ =
0.03) with ~Ω = 2 and ~Ω = 5. The dot parameters are taken
as ΓL,R = 1, ǫd = −4, U = 8, and β = 100.

also become obscure away from the optimal situation.
The coexistence of the leviton and the Kondo reso-

nance results in enhancement of the dc current

I =
e

~

∫

dωTr

[(

−1

π
ImGr(ω)

)

(fL(ω)− fR(ω))

]

, (6)

where the trace is taken over the Floquet indices. The de-
pendence of the differential conductance ∂I/∂VAC on q is
shown in Fig. 3 for various values of τ and Ω. At τ = 0.01,
the conductance is significantly enhanced around q ∈ Z

for both ~Ω = 2 and ~Ω = 5 cases, indicating the ref-
ormation of the many-body resonance in the dynamical
regimes. The conductance at integer q is reduced for
large values of τ because the weight of the left conduc-
tion electrons forming the Kondo resonance decays as
|u−1|

2 ∼ e−4πτ . The differential conductance shows rich
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transport properties of levitons away from the optimal
points as well. For instance, it can be negative between
the resonant peaks due to the hole contribution gener-
ated by the non-quantized Lorentzian pulses. The peak
found around q ≃ 0.5 for ~Ω = 2 results from the photon-
assisted transports: electrons can tunnel through the QD
by absorbing photons. This picture is complementarily
confirmed by the reduction of the corresponding peak for
the case with ~Ω = 5, where all the Floquet sidebands
with positive quasienergies are located above the Fermi
energy. The enhancement of the conductance at q ∈ Z

may provide a future experimental evidence of the leviton
tunneling through the Kondo resonance. Recent experi-
ments [25, 26] have succeeded in producing levitons with
the driving frequency Ω ≃ 38GHz at Te ≃ 35mK, which
is lower than the typical values of the Kondo temperature
TK ≃ 0.7K∼ 15GHz in a Kondo QD [5].
Conclusion.— In this Letter, we have demonstrated

the coherent transport of levitons through the Kondo
resonance realized in a QD system. The dynamical for-
mation of the Kondo resonance and its coexistence with
the levitons can be identified as the enhancement of the
dc transport under quantized Lorentzian pulses. Since
the leviton carries rich information on the many-body
resonance state, we can probe the dynamical properties
of the interacting system by measuring the quantum in-
terference and the noise spectroscopy of the leviton. The
present study also opens new possibilities for designing
a quasiparticle excitation in interacting electron systems
by engineering a time-dependent field.
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