Signal processing for electron quantum optics

Benjamin Roussel1, Clément Cabart2, Arthur Marguerite3, Gwendal Feve3, and Pascal Degiovanni4

1Laboratoire de Physique de l’ENS Lyon (Phys-ENS) – CNRS : UMR5672, Ecole Normale Supérieure de Lyon, Université Claude Bernard-Lyon I - UCBL (FRANCE) – 46 allée d’Italie 69007 Lyon, France
2Laboratoire de Physique de l’ENS Lyon (Phys-ENS) – CNRS : UMR5672, École Normale Supérieure (ENS) - Lyon – 46 allée d’Italie 69007 Lyon, France
3Laboratoire Pierre Aigrain (LPA) – CNRS : UMR8551, Université Pierre et Marie Curie (UPMC) - Paris VI, Université Paris VII - Paris Diderot, Ecole Normale Supérieure de Paris - ENS Paris – Département de Physique Ecole Normale Supérieure 24, rue Lhomond F-75231 Paris Cedex 05, France
4Laboratoire de Physique de l’ENS Lyon (Phys-ENS) – CNRS : UMR5672, Ecole Normale Supérieure de Lyon – 46 allée d’Italie 69007 Lyon, France

Abstract

Electron quantum optics is an emerging branch of electronic transport aiming at generating, manipulating and characterizing elementary excitations of the electronic fluid, similarly to what is done in photon quantum optics [Annalen der Physik 526, 1 (2014)].

The key question in electron quantum optics is to determine what single-electron and more generally many-electron wavefunctions are propagating within the conductor. This is encoded within the electronic coherences defined similarly to the Glauber correlation function of order n giving access to the result of every n-particle interferometry experiments. This raises the question of the best elementary signals describing the electronic coherences of a periodically driven electronic source [Physical Status Solidi (b), 1600621 (2017)].

In this work, we introduce the spectral decomposition of the electron and hole parts of the first-order coherence. From this we compute the best elementary signals describing a periodic source. Whenever interactions can be neglected, we can reconstruct the whole many-body state. We then define a many-body notion of entanglement spectrum giving a many-body criterion for pure electron or hole emission. This is in particular relevant when considering a driven Ohmic contact or the mesoscopic capacitor.

\astSpeaker